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A lot of papers devoted to the Kuiper belt were published
last years (see a review by Weissman (1995)). Ipatov (1988b,
1995) numerically investigated evolution of orbits of three
gravitating beyond-Neptune bodies circling the Sun. Basing on
these results and dependencies of the evolution of the average
eccentricity eav in the disc of bodies on the number and masses
of the bodies constituting the disc, I obtained that if the disc
consists of identical bodies with masses close to the masses
of the discovered objects of the Kuiper belt, then eav grew
up to 0.1 and average inclination iav grew up to 4� during
the age TSS of the Solar System, if the total mass of the disc
equaled to several Earth masses. Below I consider variations
in semimajor axis a of beyond-Neptune bodies due to their
mutual gravitational influence.

Stern (1995) considered 35,000 objects with radius r �
100 km and explored the rate of collisions among bodies in the
present-day Kuiper disc. He adopted a particle in a box for-
malism for calculations of collision rates. The same approach
was used by Fernandez (1980) for estimates of average times
elapsed between close (up to a radius rs of the considered
sphere) encounters of beyond-Neptune bodies. The spheres
used by Fernandez were less than the sphere of action (i.e., the
Tisserand sphere), so the role of gravitational interactions was
understated. The particle in a box approach is based only on
the average velocity but it does not take into account various
orbits of bodies. Davis and Farinella (1996) used some modi-
fications of Öpik’s formulas for calculations of the probability
pij of a collision of a pair of bodies.

For the case when semimajor axes a, eccentricities e, and
the angle between the orbital planes, ∆i, do not change before
a collision, Ipatov (1988a) obtained the following formula for
the characteristic time Tc elapsed up to the collision of two
bodies circling the Sun, :

Tc � 2 �2
� sin ∆i Ts (R=rΣ)

2
=(k' kΘ) ; (1)

where kΘ = 1 + (vp=vr)
2, k' = ∆'=r�s , r�s = rs=R, ∆' is

the sum of angles (in radians) with apices in the Sun, within
which the distance between the orbit of the first body and the
projection of the second orbit on the plane of the first orbit
is less than rs, Ts is the synodic period of revolution, rΣ is
the sum of bodies’ radii, vp=vr is the ratio of parabolic and
relative velocities of the bodies, R is the distance of bodies
from the Sun, and � may vary between 0.5 and 1 depending on
the considered model. Appraisals presented below are made
for � = 1. For � = 0:5 they are smaller by a factor of 2. In
contrast to the approach, used by Öpik (1951), Arnold (1965),
and other scientists, Tc depends on Ts and k'.

For actual beyond-Neptune objects, ∆i usually varies be-
fore a collision due to variations in i, !, and Ω caused by
gravitational influence of planets. Therefore, in this case it is
better to consider the model, for which ∆i varies between 0 and
∆imax before encounters up to rs and sin ∆i � ∆i. For this case
Ipatov (1988a) obtained the formula that uses ∆imax=� instead
of sin ∆i in formula (1), where � = 0:5 + ln(∆imax=r

�

s). We

denote by T � the values of Tc for such model with variable ∆i.
The ratio of T �=Tc equals to �=2 at sin ∆i � ∆i = ∆imax=2.
At ∆imax = 10� we have �=2 � 4:4 for ratios of masses of
bodies to the mass of the Sun �1 = 5 � 10�12 close to those for
the observed beyond-Neptune bodies and �=2 � 6 for bodies,
which masses are smaller by a factor of 1000.

Typical values of T � are obtained to be equal to 3:5 � 1016

yr for rΣ = 200 km, R = 40 AU, i varing from 0 to 10�,
and Ts = 2P , where P is the period of a revolution of a body
around the Sun. The value of the average intrinsic collision
probability, which corresponds to the above value ofT � , equals
to 7 �10�22

km
�2
yr

�1 and is of the same order as that obtained
by Davis and Farinella (1996). If we suppose that a typical
beyond-Neptune object crosses orbits of 2 � 104 objects, then
the time elapsed up to its collision with one of such objects is
� 2 � 1012 yr. So less than 1% of these objects could collide
with other such objects during TSS. If we suppose that the
number of bodies with radius r > r

�
is k2 times greater than

the number of bodies with radius r > r
�
k, then we obtain that

a body with radius r = 100 km collides with some body with
radius r � 10 km in 7 � 108 yr.

The probability and deterministic methods (Ipatov, 1992,
1993b) may be used for a choice of the pairs of bodies en-
counting up to the radius of the considered sphere. For the
probability method, the pair of encounting bodies is chosen
proportionally to the probability pij of their encounter. For
the deterministic method, the time �ij (where �ij / 1=pij )
elapsed until the isolated (from other bodies) encounter of the
pair of encounting bodies is minimum. Results of computer
runs showed that if the number of bodies in the disc is not
small (i.e., each body can cross the orbits of several other bod-
ies), then for the deterministic algorithm the velocity of disc
evolution is by a factor of ten (or more) greater than that for
the probability algorithm. So in the Kuiper belt characteris-
tic times between collisions can be several times smaller than
those presented above and obtained for the probability ap-
proach.

A characteristic time between a close encounter of two
identical objects up to the radius rst of the Tisserand sphere is
about 4 �1010 yr for a = 40 AU, �1 = 5 �10�12, and ∆i varying
from 0 to 10�. If the orbit of the object can cross the orbits of
2 �104 objects of the same size, than for a probability approach
it takes part in Nen � 2 �103 encounters up to rst during TSS .
For the deterministic approach, Nen may exceed 2 � 104. To
my opinion, an actual evolution of the disc consisted of a large
number of objects may be closer to the deterministic approach.

For �1 = 5 � 10�12 at e = 0:05 and ∆i = 0, the values
of da=a are about 10�4, where da is the mean value of the
difference between variations in a during one encounter up to
rst (Ipatov, 1995). For a spatial model, the values of da=amay
be smaller by a factor of 2 or 5. If the body is located in the
middle of the belt of almost identical bodies, then daΣ, its mean
variations in a during Nen encounters, may be � da � N

1=2
en .

Lunar and Planetary Science XXVIII 1588.PDF



MUTUAL GRAVITATIONAL INFLUENCE OF BEYOND-NEPTUNE BODIES: S. I. Ipatov

In this case, even for Nen � 2 � 104 at a = 40 AU and
da=a = 10�4, we have daΣ < 0:1 AU. The difference of
semimajor axes of two gravitating bodies have a tendency to
increase (until it will become about a � e). So if the body is at
the edge of the disc, then daΣ may be closer to da �Nen than
to da �N 1=2

en .
Ipatov (1995) obtained that da / �

1=2
1 at e � 50(�1)

1=3.
Therefore, variations ina for bodies with masses�1 � 5�10�12

during Nen = 2 � 104 encounters up to rst will be of the
same order than those for bodies with masses �1 = �pl at
Nen = 103, where �pl is the ratio of the mass of Pluto to
the mass of the Sun. Our runs of evolution of three and
four identical gravitating bodies with �1 = �pl showed that
variations in a for some bodies exceeded 10% during 103

encounters. So variations in a of some actual beyond-Neptune
bodies during TSS could exceed 1 AU.

Our results of investigations of evolution of orbits of grav-
itating objects - material points with �1 � 10�9

� 10�8 at
e � 0:05 � 0:2 and ∆i = 0 showed that for every N

�

en �

103
� 104 encounters up to rst there is such encounter, for

which variations in a are about a � e. The difference between
the values of a of two encounting objects can change a sign at
such encounters. In particular, two bodies of identical masses
can exchange their values of a. Basing on results of the runs
with �1 � 10�9 � 10�5, I evaluated that N�

en � 104 � 105

at �1 � 5 � 10�12. The above jumps in a were obtained for
the planar model. Let us suppose that for a spatial model the
ratio nr of the number of encounters up to rst to the number
of such jumps is of the same order as that for the planar model.
In this case, for a deterministic approach during TSS a body
may have on the average one chance to change considerably
its semimajor axis (for a probability approach this chance is
smaller by an order of magnitude). For the Kuiper belt, most
of these very close encounters may not finish by collisions
of objects, and the objects can change their semimajor axes
considerably. Probably, nr is smaller for a spatial model, but
the results presented above indicate that, due to gravitational
influence of the largest bodies of the Kuiper belt, variations

in a for some bodies may exceed several AU during TSS, and
separate bodies can migrate from the middle and external parts
of this belt to the internal part of the belt.

Duncan et al. (1995) showed that there is a region (36
AU � a � 39 AU) with i � 15� and e � 0:05, which
is dynamically stable for the age of the Solar System. The
observations to date indicate that this region is unpopulated.
Our results show that some bodies could left this region due to
the gravitational influence of the largest bodies of the Kuiper
belt.

Our results of investigations of evolution of discs of bodies
(Ipatov 1993a) obtained using the spheres method showed that
the eccentricities of the largest bodies of the disc are smaller on
the whole than the average eccentricity and these bodies can
increase their semimajor axes due to gravitational interactions
with those smaller bodies, which decrease their semimajor
axes. The same conclusions may be true also for the Kuiper
belt, in which some bodies migrated to the orbit of Neptune.
Therefore, a fraction of large bodies (among all bodies) may
be larger for the central part of the Kuiper belt than for the
inner part.
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